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Anomalous diffusion on fractal lattices with site disorder 
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Sherbrooke, Sherbrooke, Qutbec J1K 2R1, Canada 
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Abstract. Like random walks on Euclidean lattices, random walks on fractal lattices are 
modified by a waiting time (site) disorder when the first moment of the waiting time 
distribution diverges. It is shown that for lattices which support recurrent walks (spectral 
dimension smaller than two) the inverse of the diffusion exponent in the presence of 
disorder is increased by the difference between the waiting time fractal dimension and the 
usual fractal dimension. This hyperscaling relation is derived for Sierpinski gaskets in 
arbitrary dimension with scale-dependent waiting times. This provides qualitative insight 
into this problem and the exponent relation derived should also hold for statistically 
self-similar structures such as percolation clusters. For lattices whose usual spectral 
dimension is larger than two, a mean-field result holds. 

1. Introduction 

Anomalous diffusion refers to random walks with mean-square displacement (R2> 
which scales as t Z Y  with v < ( v = for random walks on Euclidean lattices). Anomalous 
diffusion occurs, for example, on percolation clusters. Such clusters form, within a 
correlation length, a statistically self-similar hopping network (locally, though, the 
hopping rate is either 1 or 0 with probability p and (1 - p )  respectively and this 
distribution of hopping rate is not self-similar). Anomalous diffusion also occurs on 
Euclidean networks with random biases (Fisher 1984) or with power law distributions 
of waiting times or hopping rates (Alexander 1981, Stephen and Kariotis 1982, Machta 
1985). 

There are physical problems where one is faced with anomalous properties arising 
both from an underlying percolation network and from a power law distribution of 
hopping rates. For example, to compute the conductivity of continuum percolation 
systems, one is led to introduce for certain classes of problems a mapping to the 
so-called ‘swiss-cheese’ model which involves a regular percolation network with a 
power law distribution of conductivities (Halperin et a1 1985, Kogut and Straley 1979). 

In this paper, we investigate the type of anomalous diffusion which results when 
both the network and waiting times are such that each can independently produce 
anomalous diffusion. To this end, we calculate the anomalous diffusion exponent for 
a random walk on a Sierpinski gasket with a power law waiting time distribution. In 
other words, we consider a Sierpinski gasket where each bond has a constant hopping 
rate and the waiting times at the vertices are unequal but distributed in a regular 
self-similar fashion. We find that the anomalous exponent v, is simply related to the 
exponent Y which occurs when there is a single waiting time, to the fractal dimension 
and to the waiting time fractal dimension introduced by Machta (1985). We give a 
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simple physical interpretation of our results. The general exponent relations we find 
for a recurrent walk should apply, for example, to diffusion on percolation clusters 
with a power law distribution of waiting times or to the corresponding properties of 
equivalent elastic or electric network problems. Indeed, it is by now well established 
that simple regular self-similar structures (such as the Sierpinski gasket) can provide 
qualitative insight into the behaviour of real disordered systems characterised by 
statistical self-similarity (Gefen et a1 1981). For example, general relations between 
anomalous diffusion, fractal dimension and the exponents characterising spectral 
properties are easy to check explicitly on regular fractals and apply equally well to 
percolation clusters. We believe that qualitative insight is of the utmost importance 
for the type of problems discussed here since the understanding of real systems rests 
on the properties of stable distributions (Feller 1971). Such distributions sometimes 
have very counter-intuitive properties. 

Anomalous diffusion translates into corresponding anomalous properties for prob- 
lems mathematically equivalent to the random walk, such as resistor-capacitor networks 
or mass and (isotropic) spring problems. 

In 0 2 the model is specified in more detail. Section 3 contains a renormalisation 
group derivation of our result. A discussion of our work and its relation to more recent 
papers may be found in 0 4. 

2. The model 

We start from the master equation for the random walk 
2 d  

T i d p , ( t ) / a t = C  w(<-pi) 
j 

where Pi(r) is the probability for a random walker to be at site i at time t, T~ is the 
waiting time on site i and W is the hopping rate. The sum o v e r j  runs on the nearest 
neighbours of every site i. The Laplace transform of (1) is 

2d 

( -T i#+ u)@i(S)-C W e ( S )  = T,pi(o) 

g i ( s )  = e-"Pi( t )  dt  (2b) 

(2a)  
j 

with 

lom 
and U = 2d W with 2d the number of nearest neighbours on a d-dimensional Sierpinski 
gasket. 

Figure 1 illustrates the model in two dimensions. The Sierpinski gasket is made 
up of constant hopping rates distributed on a self-similar network and the waiting 
times at the vertices are distributed in a self-similar fashion. The waiting times at the 
smallest scale are unity and they increase by a factor r at each successive level of the 
gasket. 

The fractal dimension d of the usual Sierpinski gasket (identical vertices) is 
well known: 6= ln(d + l)/ln(2). For our modified gasket, it is natural to introduce a 
new fractal dimension dT since the vertices are weighted differently. A natural definition 
for the fractal dimension dT of the waiting times is T ( L )  - L'T where T ( L )  is the sum 
of all waiting times within a typical region of linear size L. This quantity will be 
different from the usual fractal dimension of the gasket if r (see figure 1) is larger than 
3. 
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Figure 1. Two-dimensional Sierpinski gasket with self-similar arrangement of site waiting 
times. At the smallest scale, the waiting time is unity. These times increase by a factor r 
from one level of the gasket to the next. 
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To compute the fractal dimension (r, of the waiting time distribution, consider 
‘typical’ pieces of size 1 ,  2 ,  4 ,  8 and 16 measured in units of an edge of the smallest 
triangles. These pieces, labelled (a), (b), (c), (d) and (e), are illustrated in figure 2 .  
The sum of the waiting times in each region is, respectively, 

(a) 7 ( 1 ) = 2 + r  
(b) 7 ( 2 ) = 3 + 2 r + r 2  
(c) ~ ( 4 )  = 9 1  3r + 2r2+ r3 
(d) T (  8 )  = 27 + 9 r  + 3 r2 + 2r3 + r4 
(e) T (  16)  = 81 + 27r + 9 r 2 +  3r3 + 2 r 4 +  r5 .  

( 3 )  

For large length scales, ~ ( 2 ~ )  with n large, we can distinguish two cases: given that 
the first terms of the polynomials in ( 3 )  are powers of r / 3 ,  we see that 

for r < 3  hence & = ln(3)/ln(2) ( 4 a )  
T(2n+’)  
T ( 2 n )  
~- - 3  

Clearly, our choice of starting point and of successive regions (a), (b), (c), (d), (e) on 
the figure is not completely general. Most other starting points though give the same 
result for sufficiently large length scales. The cases which do not satisfy ( 4 a )  and (46) 
are not very frequent. Analogous considerations give for the d-dimensional Sierpinski 
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Figure 2. Example of successive length scales considered for the definition of the waiting 
time fractal dimension d7 on Sierpinski gaskets. 

gasket 

dT = In( d + l)/ln(2) = d for r <  d + 1 

dT = 1n(r)/ln(2) f o r r > d + l .  

The above geometrical considerations give the regular fractal version of power law 
waiting time distributions in disordered systems. To make the connection between the 
fractal dimension dT defined above and the power law characterising the distribution 
of waiting times in the disordered case, consider the three classes of distributions 
defined by Alexander et a1 (1981). Let 9 ( r )  be the probability density for having a 
waiting time 7 at a given site. Then, with 

P(7) - r-O1-l for r+co ( 6 )  
we have 

class (a): a > 1 

class (c): 0 < a < 1 

Note that a + 1 - a in the notation of Alexander er a1 (1981). For the gasket in figure 
1, we have by construction three times more waiting times T then times rr. Hence, in 

(first moment finite, ordinary diffusion) 

(first moment undefined, anomalous diffusion). 
class (b): a = 1 (intermediate case) (7) 
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d dimensions 

P ( T ) d ( T ) = ( d + l ) P ( r T ) d ( r T )  

which means, by comparison with (6), 

(Y =ln (d+ l ) / l n ( r ) .  (9) 

The value r = d + 1 in (5a) and ( 5 b )  thus separates cases that correspond exactly to 
the three classes identified in (7): 

class(a) I < r < ( d + l )  d7= ln (d+ l ) / l n  ( 2 ) = 6  
class (b) 
class (c) r > d + 1 

r = d + 1 d? = d 
dT = In(r)/ln (2) = d / a .  

(10) 

It is thus convenient to use the waiting time fractal dimension since the different 
regimes correspond exactly to the different classes. In analogy with the one-dimensional 
case, we show below that it is only when the waiting time fractal dimension differs 
from the network fractal dimension (class (c)) that anomalous diffusion due to the 
waiting time distribution sets in. The marginal class (b) requires special discussion. 
Our definition of waiting time fractal dimension is analogous to that first introduced 
by Machta (1985). Note also that the arguments used to define the waiting time fractal 
dimension involve consideration of ‘typical’ configurations in complete analogy with 
the arguments one must use to compute sums of variables with distributions of the 
type of ( 6 )  when no formal average exists. 

3. Renormalisation group analysis 

It is possible, in general, to apply exact position space renormalisation group (PSRG) 

methods to the Sierpinski gasket. We follow the method proposed by Tremblay and 
Southern (1983) and Rammal (1984). The generating function 9 for this problem is 

%=In(  gpexp[ -+P*(Ts+H)P]  (11) 

where 

P‘ = (PI ,  P2, . . , ) 

while T is the diagonal matrix containing the waiting times T~ and H is the matrix 
defined by writing the left-hand side of (2) as ( T s + H ) P .  Note that the eigenvalues 
of H are positive; hence the integral in (11) converges. 

To generate recursion relations, one performs the integrals in (1 1) over the variables 
for the sites at the smallest length scale. The unintegrated variables can be relabelled 
and the parameters redefined in such a way that the remaining problem is equivalent 
to the original one but with one fewer level of iteration. The renormalised parameters 
are, for the two-dimensional gasket, 
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As usual, a ‘constant term’ (i.e. independent of the unintegrated variables) is generated. 
For a d-dimensional gasket, we use the method of Rammal (1984)  to obtain 

r ’  = rr ( 1 3 a )  

( 1 3 b )  

(13c )  

U’= U + 2 d W 2 [ ~ s  - U + 2 ( d  - 2 )  W ] / [ T S  - U + 2 ( d  - 1 )  W ] [ T S  - U +  ( d  - 3 )  W ]  

W’ = - W2( T S  - U - 2 W ) /  [ r s  - U + 2( d - 1 ) W ] [  TS - U + ( d  - 3 )  W ] .  

One can also take advantage of the arbitrariness in the choice of dummy integration 
variables to make a non-singular change of variables that reduces the set of three 
parameters ( r ,  U, W )  to only two (U, U). To this end, one chooses the variables 
QI = mPl at each step of the iteration. In terms of these variables, the parameter U 
is always equal to unity and the recursion relation for the ‘constant term’ is modified. 
The new parameters are U = r s /  U and v = W /  U. The diagonal terms are ( u r n  - 1 )  
where n depends on the position of the site on the Sierpinski gasket. In terms of these 
new parameters, the recursion relations are 

I U [ U  - 1 + 2 ( d  - ~ ) v ] [ u  - 1 + ( d  - 3 ) v ]  
[U - 1 + 2 ( d  - l ) v ] [  U - 1 + ( d  - 3 ) ~ ]  +2dv2[u  - 1 + 2 ( d  - 2 ) v ]  U‘ = ( 1 4 a )  

( 1 4 b )  
v 2 (  U - 1 - 2 v )  v ‘ =  - 

Since we are interested in the asymptotic behaviour ( R 2 ) -  t 2”  as r +  CO, we restrict 
ourselves to small values of the Laplace variable s. The only fixed point of interest is 
thus U* =0,  U * =  1/2d  (with the initial value 1 for W ) .  The recursion relations ( 1 4 )  
linearised near this fixed point are 

[ U  - 1 + 2 ( d  - ~ ) u ] [ u  - 1 + ( d  - 3 ) ~ ]  +2dv2[u  - 1 + 2 ( d  - 2 ) v ]  ’ 

Au’ = (s) rAu 

AV’ ==Au + ( d  +3)Au  
2 (d  + 1 )  

where A u  = U - U* = U and AV = v - U* = U - 1/2d.  The eigenvalues of the transforma- 
tion are 

A 2  ( 1 6 )  
With b = 2 as the length rescaling factor, these expressions also define yl  and y,. We 
proceed to show that the relevant scaling for anomalous diffusion is given by the larger 
eigenvalue. One first checks explicitly that the ‘constant’ term is non-singular so that 
the singular part of the generating function per site obeys, after 1 iterations, the 
functional equation 

A 1 -  =b’l=r [ ( d + 3 ) / ( d + l ) l  by: = ( d + 3 ) .  

f i l ) ( A u ( ‘ ) r n  - 1 ,  AV‘”+ 1 / 2 d )  = (ba ) - l f< l+l ) (Au( ‘+l ) rn  - 1 ,  Av ( ’+ l )S  1 / 2 d )  ( 1 7 )  
where the first and second arguments refer respectively to diagonal and off -diagonal 
terms. Note that the recursion relations are such that the smallest value of n is always 
zero. With the help of the eigenvectors of (15), the left-hand side of (17 )  may be 
rewritten 

(18 )  
f l ) ( * i i r n - l , - +  1 A:  S 

2d 2 ( r - d - l )  4 - 2 ( r - d - 1 )  4 
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Figure 3. Double logarithmic plot (1200 points) of the Laplace transform of the probability 
of being on the starting site as a function of the Laplace variable. The slope is - 1  + dv, 
and the theoretical values for the two cases considered are d = In 3/ln 2 and U, =In 2/ln 5 
in ( a )  and U, = In 2/1n(40/3) in ( b ) .  ( a )  Waiting time distribution r = 2, numerical slope = 

-0.319; analytical slope = -0.317. ( b )  Waiting time distribution r = 8, numerical slope = 
-0.575; analytical slope = -0.576. 
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After a large enough number of iterations, one is sufficiently far away from the singular 
point to expand the generating function around the point which would have been 
reached if the smaller of the two eigenvalues had been set equal to zero. Keeping only 
the leading term, we see that different initial values of s can all be iterated towards 
the same value S by choosing the number of iterations I such that S = bIYs where, with 
the definitions (16), y = y ,  if r < ( d  + 1) and y = y ,  if r > ( d  + 1). Since the generating 
function determines the properties of the random walk, this means that values of s 
which differ by a ratio s‘/s = b’ (corresponding to time ratios t ’ / r  = l / b y )  have related 
properties at length scales which differ by R’/R = l /b.  Since by definition, (R2)- f 2 ” ~ ,  

we have that v, = l/y. We thus have 

class (a) 1 < r < d + 1 

class (c) r > d + I 
v, =ln(2)/ln(d +3)  (190) 
v, = ln(2)/ln[r(d+3)/(dS l)]. (19b) 

For class (b), R = d + 1 and the two eigenvalues are degenerate and there is no set of 
eigenvectors that can diagonalise equations (1 5). This leads to logarithmic corrections. 
A fuller discusion may be found in Robillard (1985). Note that our analytical results 
refer only to the ‘envelope’ of the space against time behaviour because the arguments 
preceding (19) ignore the fact that since b can take only discrete values, the solution 
to a functional equation such as (17) is not a pure power law but instead is a power 
law multiplied by a periodic function of ln(s)/ln(Amax) with period one. (We also use 
the fact that the eigenvectors are proportional to s (Derrida er a1 1983).) Similar 
corrections are encountered in the theory of stable distributions (Di Castro and 
Jona-Lasinio 1976, Feller 1971, Machta 1985). 

To close this section we check our results by numerical calculation of the spectral 
dimension (i, defined by the probability F‘ll(t) for a random walker starting at site i 
to be at that same site at time t, PE,(  t )  - tCd~”.  This spectral dimension also describes 
the spectrum of low frequency excitations of an equivalent elastic problem with a 
distribution of masses but has evidently nothing to do with whether the walk is recurrent 
or not by contrast with the spectral dimension d’ which is usually defined for fractals 
with uniform waiting times (Rammal and Toulouse 1983, Alexander and Orhach 1982). 
The Laplace transform of the sum over i of P, , ( r ) ,  which behaves as s- ’  t d J 2  , may be 
obtained from af/ds - It is apparent from (17)-( 19) that J7 = 2dv,. We have 
checked numerically the value of & for the different classes of distributions (6)-(10). 
Figure 3 illustrates the results. The slope in the various cases is -1 + d / y  = -1 + dvT 
and confirms that y is the larger of the two exponents in (16) and that (20) holds. 

4. Discussion and conclusion 

Let v be the exponent characterising anomalous diffusion on a fractal structure, 
(R’) - t2“.  With a power law distribution of waiting times, diffusion on the same fractal 
structure is modified. If v, denotes the exponent for diffusion in the presence of a 
waiting time (site) distribution and d, is the waiting time fractal dimension, then our 
main result is that 

( k 2 )  (20) ( v r ) - l  - v-’ = J7 - d 
with 2, defined by (9) and (10) for the various kinds of distributions of waiting times. 
As usual (Machta 1985), when an average waiting time exists, dT = d and the diffusive 
behaviour is the same as when the waiting time is the same on every site. 
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The result, (20), has a very simple physical interpretation. From t - R ” ” ,  and 
from (20) 

t - R””(R’T/R’)). (21) 

The first factor in (21) is the time necessary to leave a region of size R on the fractal 
when the waiting time is the same at every site. From the discussion of 4 2, Rdr is the 
typical total waiting time in a region of length scale R while R’ is the number of sites 
in that same region. The factor R’r/R’ is thus the typical waiting time per site in a 
region of length scale R. The random walk has thus the same trail (Mandelbrot 1983) 
(geometrical shape) as the walk without waiting time distribution, but the typical 
waiting time per site is length scale dependent. 

This physical interpretation clearly suggests that our results are far more general 
than our derivation. We have verified the validity of (20) explicitly on the branching 
Von Koch curve, for example, but it should also apply to cases where one has only 
statistical self-similarity as, for example, on percolation clusters with a power law 
distribution of waiting times. The physics of our result also clearly shows its limitations: 
the ratio Ra7/R‘ can be interpreted as a renormalised waiting time only if the walk 
is recurrent, i.e. if the random walk visits all possible sites in a region. Since the trail 
of the walk (Mandelbrot 1983) is the same as without waiting time disorder, this occurs 
when the spectral dimension d of the structure with a single waiting time is smaller 
than 2 (Rammal and Toulouse 1983) or equivalently, when the codimension of recur- 
rence d/2  is less than unity (Mandelbrot 1984). This is the case for Sierpinski gaskets 
in all dimensions, for percolation clusters and for most fractal structures. When the 
spectral dimension is larger than 2, one should recover the following simple generali- 
sation 

vr = LYV ( b 2 )  (22) 
of the ‘mean-field’ result of Alexander (1981). The mean-field theory for this problem 
is the continuous-time random walk approximation (CTRW) developed by Sher and 
Lax (1973) and Sher and Montroll (1975) (Machta 1985). The CTRW problem on 
fractals has been studied by Blumen et a1 (1984) who derived (22). 

For Euclidean lattices, ( d  = d, v =+) with a power law distribution of waiting times, 
our result (20) reduces to that of Machta (1985) when one notices that on hypercubic 
lattices, the spectral dimension is equal to the Euclidean dimension, which means that 
‘mean-field’ theory applies above two dimensions. This agreement supports the claim 
that our result is general. The analysis of Machta also shows clearly that given the 
properties of stable distributions, even if the waiting time distribution is not a pure 
power law, the result (20) is obtained. 

The following generalisation of heuristic arguments due to Alexander (1981) repro- 
duces both results (20) and (22). Let us consider all walks of N steps which do not 
include a waiting time larger than T,,,,,. Such walks will be ‘typical’ if they are very 
probable, i.e. if (1  -j:max P ( T )  d.r)SN is close to unity. Here S ,  is the average number 
of distinct sites visited in a walk of N steps. Thus 

S N  << ( j71sx ~ ( 7 )  d r )  - T k a x .  

For these walks, there exists an average waiting time 
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so that one can relate time t and number of steps in the walk through 

(25) 

The latter relation can be used to find the exponent Y, because N -  RI’“ with v the 
exponent without site disorder, while t - R””.. To fix T , , , ~ ~  uniquely, we also require 
that the mean square fluctuations in the average (24) be small, i.e. 

t = N (  T )  - A%,!,,;:. 

S N  >> ( T 2 ) / (  7)’ - 7zax. 

S N  - T:ax* (27) 

(26) 

Equations (23) and (26) together can both be satisfied only if 

Equations (25) and (27) yield 

(28) 

Using N - RI/”, S N  - N”’ for d’ = 2dv < 2 and S N  - N for d‘ = 2& > 2 (Rammal and 
Toulouse 1983) we recover (20) and (22). 

To summarise, we have derived the scaling law (20) for anomalous diffusion on a 
Sierpinski gasket in arbitrary dimensions with waiting times arranged in a self-similar 
fashion as in figure 1 .  Our derivation is based on an exact renormalisation group and 
the results have been checked numerically. The hierarchical arrangement of waiting 
times allows one to define a waiting time fractal dimension. When the waiting time 
fractal dimension is equal to the ordinary fractal dimension, the exponents characteris- 
ing diffusion are the same as when the waiting time is identical on every site. We have 
also given heuristic arguments which extend our results to the case of non-recurrent 
lattices (equation (22)). Note that when the waiting times at the sites are statistically 
independent from the walk itself, some of the results of the heuristic considerations 
given in (23)-(28) can be made rigorous (Feller 1949, Mandelbrot private communi- 
cation). 

The problem we have considered is interesting in its own right since there is a 
growing interest in the dynamics of systems with hierarchical arrays of barriers or 
waiting times (Palmer et a1 1984, Huberman and Kerszberg 1985, Teitel and Domany 
1985, Ogielski and Stein 1985). Teitel and Domany, for example, have stressed the 
analogy between phase transitions and the change from normal to anomalous diffusion 
which can occur in one dimension when a parameter characterising a hierarchical 
array of barriers is allowed to change. This change is analogous to the change between 
class (a) and class (c) (equation (10)). But we think that perhaps the most relevant 
aspect of our results for real systems comes from their probable applicability not only 
to the exactly self-similar problem we have discussed here, but also to statistically 
self-similar systems (disordered systems, for short) such as percolation clusters with 
power law distributed waiting times. That scaling laws derived for exactly self-similar 
objects may also be applicable to statistically self-similar systems is an idea pioneered 
by Mandelbrot which has proved to be quite useful in many previous contexts. We 
know of no simple proof in our case that (20) holds in the disordered case. One should 
beware that the Sierpinski gasket is made mostly of loops while the other fractal we 
have considered, the Koch curve, has none. Real percolation clusters have both loops 
and singly connected regions: recent results of Machta et a1 (1985) suggest that in that 
case, the loops could be irrelevant. However, the model considered by Machta er a1 
would map into a random hopping problem instead of the random waiting time problem 
we have considered here. 

t - NS(m-I-1) 
N .  
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